Baltimore County ARML Team
 Formula Sheet, v2.1 (08 Apr 2008)
 By Raymond Cheong

POLYNOMIALS	
Factoring	Difference of squares $a^{2}-b^{2}=(a+b)(a-b)$ Difference of cubes $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$ Sum of cubes $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$ Any integer n $\text { Odd integers } n$ $\begin{aligned} & a^{n}-1=(a-1)\left(a^{n-1}+a^{n-2}+\ldots+a+1\right) \\ & a^{n}+1=(a+1)\left(a^{n-1}-a^{n-2}+a^{n-1}-\ldots-a+1\right) \end{aligned}$
Binomial expansion	$(a+b)^{n}={ }_{n} C_{0} a^{n}+{ }_{n} C_{1} a^{n-1} b+{ }_{n} C_{2} a^{n-2} b^{2}+\ldots+{ }_{n} C_{n-1} a b^{n-1}+{ }_{n} C_{n} b^{n}$
Relationship between roots and coefficients	Quadratics $\begin{aligned} & a x^{2}+b x+c=0 \Rightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\ & \left(x-r_{1}\right)\left(x-r_{2}\right)=x^{2} \underbrace{-\left(r_{1}+r_{2}\right)}_{\substack{\text { negative sum } \\ \text { of roots }}} x+r_{1} r_{2} \\ & \begin{array}{c} \text { product } \\ \text { of roots } \end{array} \end{aligned}$ Cubics $\begin{aligned} & \left(x-r_{1}\right)\left(x-r_{2}\right)\left(x-r_{3}\right)= \\ & x^{3} \underbrace{-\left(r_{1}+r_{2}+r_{3}\right)}_{\text {negative sum of roots }} x^{2} \underbrace{\left(\begin{array}{c} \text { negative } \\ \text { product } \\ \text { of roots } \end{array}\right.}_{\begin{array}{c} 2 \\ \hline\left(r_{1} r_{2}+r_{2} r_{3}+r_{1} r_{3}\right) \text { roots taken } \\ \text { 2 at a t time } \end{array}} x-r_{1} r_{2} r_{3} \end{aligned}$ General $\quad x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{1} x+a_{0}=0$ (Vieta's $\quad a_{n-1}=-\left(r_{1}+r_{2}+\ldots+r_{n}\right)$ Theorem) $\quad a_{n-2}=r_{1} r_{2}+r_{1} r_{3}+\ldots+r_{n-1} r_{n}$... $a_{n-p}=(-1)^{p}$ (sum of roots taken p at a time) ... $a_{0}=(-1)^{n} r_{1} r_{2} \ldots r_{n}$
Rational root theorem	Let $a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{1} x+a_{0}=0$, where all coefficients are integers. All rational roots (if they exist) are of the form $\pm b / c$ where b and c are factors of a_{0} and a_{n}, respectively.

SEQUENCES	
Arithmetic sequences	Consecutive terms have the same difference: $a, a+d, a+2 d, a+3 d, \ldots, a+(n-1) d \quad(n \text { terms })$ sum $=(\#$ of terms $)($ average of first and last term $)$ sum $=(\#$ of terms $)($ average of all terms $)$ sum $=(\#$ of terms $)($ median of all terms $)$ $\begin{array}{ll} 1+2+3+\ldots+n=\frac{n(n+1)}{2} & \text { first } n \text { integers } \\ 1+3+5+\ldots+(2 n-1)=n^{2} & \text { first } n \text { odd integers } \end{array}$
Geometric sequences	Consecutive terms have the same ratio: $\begin{aligned} & \qquad a, a r, a r^{2}, a r^{3}, \ldots, a r^{n-1} \quad(n \text { terms }) \\ & \text { finite sum }=a+a r+a r^{2}+\ldots+a r^{n-1}=\frac{a\left(1-r^{n}\right)}{1-r} \\ & \text { infinite sum }=a+a r+a r^{2}+\ldots=\frac{a}{1-r},\|r\|<1 \end{aligned}$ sum of powers of $2=1+2+4+\ldots+2^{n}=2^{n+1}-1$
Other sequences	$\begin{aligned} & \text { Sum of squares }=1^{2}+2^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6} \\ & \text { Sum of cubes }=1^{3}+2^{3}+\ldots+n^{3}=\frac{n^{2}(n+1)^{2}}{4} \end{aligned}$

LOGARITHMS	Definition: $\log _{b} a=c$ means that $b^{c}=a$	
Basic properties	$b^{\log _{b} a}=a$	$\log _{b} 1=0$
$\log _{b} a^{n}=n \log _{b} a$	$\log _{b} b=1$	
$\log _{b} m n=\log _{b} m+\log _{b} n$	$\log _{b} a=\frac{1}{\log _{a} b}$	
	$\log _{b} \frac{m}{n}=\log _{b} m-\log _{b} n$	$\log _{b} a=\frac{\log _{c} a}{\log _{c} b}$

NUMBER THEOR	
Modular arithmetic	$a \equiv b(\bmod m) \quad \text { means that } a \text { and } b \text { leave the same }$ remainder when divided by m If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then for any integer n : $\begin{array}{ll} a \pm n \equiv b \pm n(\bmod m) & a n \equiv b n(\bmod m) \\ a \pm c \equiv b \pm d(\bmod m) & a c \equiv b d(\bmod m) \end{array}$ Fermat's Little Theorem: If p is prime and a is relatively prime to p then $a^{p-1} \equiv 1(\bmod p)$
Number of factors	If the prime factorization of $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{m}{ }^{a_{m}}$, then n has $\left(a_{1}+1\right)\left(a_{2}+1\right) \ldots\left(a_{m}+1\right)$ positive factors.
Definition of base	A number with digits $a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}$ in base b means that $\underline{a_{n} a_{n-1} \ldots a_{1} a_{0}} b=a_{n} b^{n}+a_{n-1} b^{n-1}+\ldots+a_{1} b+a_{0}$
Divisibility rules	Let $k=\underline{a_{n} a_{n-1} \ldots a_{1} a_{0}}$ in base 10.
Remainder rules	Let $k=\underline{a_{n} a_{n-1} \ldots a_{1} a_{0}}$ in base 10 . 2, 5, $10 \quad$ last digit has same remainder 3, $9 \quad$ sum of digits has same remainder $11 \quad a_{0}-a_{1}+a_{2}-a_{3}+a_{4}-\ldots$ has same remainder $2^{k}, 10^{k} \quad$ number formed by last k digits has same remainder

Combinatorics	Permutation: number of ways to choose r items from n distinct objects where different orderings ${ }_{n} P_{r}=\frac{n!}{r!}$ are distinct Combination: number of ways to choose r items from n distinct objects where order does not matter ${ }_{n} C_{r}=\binom{n}{r}=\frac{n!}{r!(n-r)!}$ Partition: number of ways to group n identical objects into m distinct bins, with zero items in a $\quad\binom{n+m-1}{m-1}$ bin allowed Word rearrangement: Number of ways to rearrange the letters of a word with n_{A} A's, $\frac{n!}{n_{A}!n_{B}!n_{C}!\ldots n_{Z}!}$ n_{B} B's, \ldots, n_{Z} Z's, and n letters in total.
Pascal's triangle	Ones down the right and left sides. 1 Each entry is the sum of the two 11 entries above it. 121 Sum of the $n^{\text {th }}$ row $=2^{n}$ 1331 Each entry is a combination. Entries of the $n^{\text {th }}$ row give the coefficients of the $n^{\text {th }}$ order binomial expansion. 154641 t 151051 (The rows are numbered off starting from 0. .)
Prime factorization of years	$\begin{array}{ll} 1936=44^{2}=2^{4} \cdot 11^{2} & 2009=7^{2} \cdot 41 \\ 2007=3^{2} \cdot 223 & 2010=2 \cdot 3 \cdot 5 \cdot 67 \\ 2008=2^{3} \cdot 251 & 2025=45^{2}=3^{4} \cdot 5^{2} \end{array}$

TRIANGLE GEOM	TRY
Area	$\begin{aligned} \text { area }= & \frac{1}{2} b h \\ \text { area }= & \frac{1}{2} a b \sin C \\ \text { area }= & \sqrt{s(s-a)(s-b)(s-c)} \\ & \text { where } s=\frac{a+b+c}{2} \\ & \text { (semiperimeter) } \end{aligned}$ Equilateral triangle $\text { Area }=s^{2} \frac{\sqrt{3}}{4}$
Pythagorean Theorem	$a^{2}+b^{2}=c^{2}$ Common triples: 3-4-5, 5-12-13, 7-20-21, 9-40-41, and multiples (e.g. 6-8-10) $m^{2}-n^{2}, 2 m n, m^{2}+n^{2}$ where m, n are integers is a Pythagorean Triple
Trigonometric laws of triangles	$\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$ Law of cosines: $c^{2}=a^{2}+b^{2}-2 a b \cos C$ Law of tangents: $\tan A \tan B \tan C=\tan A+\tan B+\tan C$
Angle bisectors	$\frac{a}{b}=\frac{c}{d}$

Medians		Medians divide each other into $2: 1$ segments The 6 little triangles all have equal area.
Famous triangle theorems		Stewart's Theorem $a m n+a d^{2}=m b^{2}+n c^{2}$ Ceva's Theorem $\left(\frac{a}{b}\right)\left(\frac{c}{d}\right)\left(\frac{e}{f}\right)=1$ Menelaus' Theorem $\left(\frac{a}{b}\right)\left(\frac{c}{d}\right)\left(\frac{e}{f}\right)=1$

QUADRILAT	GEOMETRY
Parallelogram	Def.: opposite sides are parallel. Properties: - Opposite sides have equal lengths - Opposite angles are congruent - Diagonals bisect each other - Diagonals form two pairs of similar triangles $\text { Area }=b h=a b \sin C$
Rhombus	Def.: parallelogram w/ all equal sides Properties: - Diagonals p and q are perpendicular. - Diagonals form 4 congruent triangles $\text { Area }=1 / 2 p q$
Trapezoid	Def.: 1 pair of opposite sides are parallel Properties: The two triangles formed by the diagonals and bases are similar. $\text { Area }=\frac{1}{2}\left(b_{1}+b_{2}\right) h$
Rectangle	Def.: parallelogram with all right angles Properties: Highly symmetric $\text { Area }=b h$
Square	Def.: rectangle with all sides equal Properties: Highly symmetric Area $=s^{2}$
Other	Chevron (left): Symmetric and concave Kite (right): Perpendicular diagonals, one of which bisects the other

| British Flag
 Theorem | Any point P (inside, outside, on,
 above, or below rectangle): |
| :--- | :--- | :--- |
| Cyclic quadrilaterals | $a c+b d=p q \quad$ (Ptolemy's Theorem) |
| $a^{2}+c^{2}=b^{2}+d^{2}$ | |

3D \& POLYGON GEOMETRY

Rectangular parallelpiped	$\begin{aligned} & \text { Volume }=a b c \\ & \text { Internal diagonal }=\sqrt{a^{2}+b^{2}+c^{2}} \end{aligned}$	
Generalized cylinder	Volume $=K h$ (K is the area of the base)	
Generalized pyramid	$\text { Volume }=\frac{1}{3} K h$ (K is the area of the base)	
Sphere	$\text { Volume }=\frac{4}{3} \pi r^{3}$ Surface area $=4 \pi r^{2}$	
Polygons	Sum of interior angles $=180^{\circ}(n-2)$ $\text { Area }=\frac{s^{2} n}{4 \tan \left(180^{\circ} / n\right)}$	(n-sided convex polygon) (n-sided regular polygon)

| CIRCLE GEOMETRY |
| :--- | :--- |
| Basic properties of |
| circles |
| Power of a point |
| theorem |
| chords, secants, and |
| tangents |

TRIGONOMETRY							
Definitions	$\begin{array}{ll} \sin \theta=\frac{a}{c} & \csc \theta=\frac{1}{\sin \theta} \\ \cos \theta=\frac{b}{c} & \sec \theta=\frac{1}{\cos \theta} \\ \tan \theta=\frac{a}{b}=\frac{\sin \theta}{\cos \theta} & \cot \theta=\frac{1}{\tan \theta} \end{array}$						
Common angles	 0° 30° 45° 60° 90° 180°						
	$\sin \theta$	0	1/2	52/2	$\sqrt{3} / 2$	1	0
	$\cos \theta$	1	$\sqrt{3} / 2$	$\sqrt{2} / 2$	1/2	0	-1
	$\tan \theta$	0	$\sqrt{3} / 3$	1	$\sqrt{3}$	$\begin{gathered} \infty \\ \text { or }-\infty \\ \hline \end{gathered}$	0
Polar vs. Cartesian coordinates	$\begin{array}{ll} x=r \cos \theta & \tan \theta=y / x \\ y=r \sin \theta & r=\sqrt{x^{2}+y^{2}} \end{array}$						
Pythagorean Theorem	$\sin ^{2} \theta+\cos ^{2} \theta=1 \quad 1+\cot ^{2} \theta=\csc ^{2} \theta \quad \tan ^{2} \theta+1=\sec ^{2} \theta$						
Double angle formulas	$\begin{aligned} & \sin 2 \theta=2 \sin \theta \cos \theta \\ & \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta=1-2 \sin ^{2} \theta=2 \cos ^{2} \theta-1 \\ & \tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta} \end{aligned}$						
Sum and difference formulas	$\begin{aligned} & \sin (a+b)=\sin a \cos b+\cos a \sin b \\ & \sin (a-b)=\sin a \cos b-\cos a \sin b \\ & \cos (a+b)=\cos a \cos b-\sin a \sin b \\ & \cos (a-b)=\cos a \cos b+\sin a \sin b \\ & \tan (a+b)=\frac{\tan a+\tan b}{1-\tan a \tan b} \quad \tan (a-b)=\frac{\tan a-\tan b}{1+\tan a \tan b} \end{aligned}$						

