Baltimore County ARML Team Formula Sheet, v2.1 (08 Apr 2008) By Raymond Cheong

POLYNOMIALS	
Factoring	Difference of squares $a^2 - b^2 = (a+b)(a-b)$ Difference of cubes $a^3 - b^3 = (a-b)(a^2 + ab + b^2)$ Sum of cubes $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$ Any integer n $a^n - 1 = (a-1)(a^{n-1} + a^{n-2} + + a + 1)$ Odd integers n $a^n + 1 = (a+1)(a^{n-1} - a^{n-2} + a^{n-1} a + 1)$
Binomial expansion	$(a+b)^{n} = {}_{n}C_{0}a^{n} + {}_{n}C_{1}a^{n-1}b + {}_{n}C_{2}a^{n-2}b^{2} + \dots + {}_{n}C_{n-1}ab^{n-1} + {}_{n}C_{n}b^{n}$
Relationship between roots and coefficients	Quadratics $ax^2 + bx + c = 0 \Rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $(x - r_1)(x - r_2) = x^2 \underbrace{-(r_1 + r_2)}_{\text{negative sum}} x + r_1 r_2$ $x = \frac{-(r_1 + r_2)}{c_1 + c_2} x + r_1 r_2$
	Cubics $(x-r_1)(x-r_2)(x-r_3) =$ $x^3 \underbrace{-(r_1+r_2+r_3)}_{\text{negative sum of roots}} x^2 \underbrace{+(r_1r_2+r_1r_3+r_2r_3)}_{\text{sum of roots taken}} x -r_1r_2r_3$ $\underset{2 \text{ at a time}}{\text{negative product of roots}}$
	General $x^{n} + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + + a_{1}x + a_{0} = 0$ (Vieta's $a_{n-1} = -(r_{1} + r_{2} + + r_{n})$ Theorem) $a_{n-2} = r_{1}r_{2} + r_{1}r_{3} + + r_{n-1}r_{n}$ $a_{n-p} = (-1)^{p}$ (sum of roots taken p at a time) $a_{0} = (-1)^{n}r_{1}r_{2}r_{n}$
Rational root theorem	Let $a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + + a_1 x + a_0 = 0$, where all coefficients are integers. All rational roots (if they exist) are of the form $\pm b/c$ where <i>b</i> and <i>c</i> are factors of a_0 and a_n , respectively.

SEQUENCES		
Arithmetic sequences	Consecutive terms have the same difference: a, a+d, a+2d, a+3d,, a+(n-1)d (<i>n</i> terms) sum = (# of terms)(average of first and last term) sum = (# of terms)(average of all terms) sum = (# of terms)(median of all terms)	
	$1+2+3++n = \frac{n(n+1)}{2}$ first <i>n</i> integers 1+3+5++(2n-1) = n ² first <i>n</i> odd integers	
Geometric sequences	Consecutive terms have the same ratio: $a, ar, ar^2, ar^3,, ar^{n-1}$ (<i>n</i> terms)	
	finite sum = $a + ar + ar^2 + + ar^{n-1} = \frac{a(1 - r^n)}{1 - r}$ infinite sum = $a + ar + ar^2 + = \frac{a}{1 - r}$, $ r < 1$	
	sum of powers of $2 = 1 + 2 + 4 + \dots + 2^n = 2^{n+1} - 1$	
Other sequences	Sum of squares = $1^2 + 2^2 + + n^2 = \frac{n(n+1)(2n+1)}{6}$ Sum of cubes = $1^3 + 2^3 + + n^3 = \frac{n^2(n+1)^2}{4}$	

LOGARITHMS	
	_

Basic properties	Definition: $\log_b a = c$ means that b^c	$\dot{c} = a$
	$b^{\log_b a} = a$	$\log_b 1 = 0$
	$\log_b a^n = n \log_b a$	$\log_b b = 1$
	$\log_b mn = \log_b m + \log_b n$	$\log_b a = \frac{1}{\log_a b}$
	$\log_b \frac{m}{n} = \log_b m - \log_b n$	$\log_b a = \frac{\log_c a}{\log_c b}$

NUMBER THEORY		
Modular arithmetic	$a \equiv b \pmod{m}$ means that <i>a</i> and <i>b</i> leave the same remainder when divided by <i>m</i>	
	If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then for any integer <i>n</i> : $a \pm n \equiv b \pm n \pmod{m}$ $an \equiv bn \pmod{m}$ $a \pm c \equiv b \pm d \pmod{m}$ $ac \equiv bd \pmod{m}$	
	Fermat's Little Theorem: If <i>p</i> is prime and <i>a</i> is relatively prime to <i>p</i> then $a^{p-1} \equiv 1 \pmod{p}$	
Number of factors	If the prime factorization of $n = p_1^{a_1} p_2^{a_2} \dots p_m^{a_m}$, then <i>n</i> has $(a_1 + 1)(a_2 + 1)\dots(a_m + 1)$ positive factors.	
Definition of base	A number with digits $a_n, a_{n-1}, \dots, a_1, a_0$ in base <i>b</i> means that $\underline{a_n a_{n-1} \dots a_1 a_0}_b = a_n b^n + a_{n-1} b^{n-1} + \dots + a_1 b + a_0$	
Divisibility rules	Let $k = \underline{a_n a_{n-1} a_1 a_0}$ in base 10.	
	2 last digit (a_0) is even 3 sum of digits $(a_0 + a_1 + + a_n)$ is divisible by 3 5 last digit (a_0) is 0 or 5	
	7 $a_n a_{n-1} \dots a_1 - 2a_0$ is divisible by 7 (use iteratively)	
	9 sum of digits $(a_0 + a_1 + + a_n)$ is divisible by 9 10 last digit (a_0) is 0	
	11 $a_0 - a_1 + a_2 - a_3 + a_4 - \dots$ is divisible by 11 2^k number formed by last k digits are divisible by 2^k 10^k last k digits are 0	
Remainder rules	Let $k = \underline{a_n a_{n-1} \dots a_1 a_0}$ in base 10.	
	2, 5, 10 3, 9 11 $a_0 - a_1 + a_2 - a_3 + a_4 - \dots$ has same remainder a_0^k , 10^k number formed by last k digits has same remainder	

Combinatorics	<u>Permutation</u> : number of ways to choose <i>r</i> items from <i>n</i> distinct objects where different orderings are distinct	
	<u>Combination</u> : number of ways to choose <i>r</i> items from <i>n</i> distinct objects where order does not matter ${}_{n}C_{r} = {n \choose r} = \frac{n!}{r!(n-r)!}$	
	Partition: number of ways to group n identical objects into m distinct bins, with zero items in a $\binom{n+m-1}{m-1}$ bin allowed	
	<u>Word rearrangement</u> : Number of ways to rearrange the letters of a word with n_A A's, n_B B's,, n_Z Z's, and <i>n</i> letters in total. $\frac{n!}{n_A!n_B!n_C!n_Z!}$	
Pascal's triangle	Ones down the right and left sides.1Each entry is the sum of the two1 1entries above it.1 2 1Sum of the n^{th} row = 2^n 1 3 3 1Each entry is a combination. Entries of the n^{th} row give the coefficients of the n^{th} order binomial expansion.1 5 10 10 5 1(The rows are numbered off starting from 0.)	
Prime factorization of years	$1936 = 44^2 = 2^4 \cdot 11^2$ $2009 = 7^2 \cdot 41$ $2007 = 3^2 \cdot 223$ $2010 = 2 \cdot 3 \cdot 5 \cdot 67$ $2008 = 2^3 \cdot 251$ $2025 = 45^2 = 3^4 \cdot 5^2$	

TRIANGLE GEOMETRY		
Area	$C \xrightarrow{a \qquad h \qquad c \qquad b}$	area = $\frac{1}{2}bh$ area = $\frac{1}{2}ab\sin C$ area = $\sqrt{s(s-a)(s-b)(s-c)}$ where $s = \frac{a+b+c}{2}$ (semiperimeter)
	s	Equilateral triangle Area = $s^2 \frac{\sqrt{3}}{4}$
Pythagorean Theorem		$a^{2}+b^{2}=c^{2}$ Common triples: 3-4-5, 5-12-13, 7-20-21, 9-40-41, and multiples (e.g. 6-8-10) $m^{2}-n^{2}$, 2mn, $m^{2}+n^{2}$ where m,n are integers is a Pythagorean Triple
Trigonometric laws of triangles	B C C b C C b C	ΔA $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$ $c^{2} = a^{2} + b^{2} - 2ab\cos C$ $\tan A \tan B \tan C = \tan A + \tan B + \tan C$
Angle bisectors	a c b d	$\frac{a}{b} = \frac{c}{d}$

QUADRILATERAL	GEOMETRY
Parallelogram	Def.: opposite sides are parallel.Properties:- Opposite sides have equal lengths- Opposite angles are congruent- Diagonals bisect each other- Diagonals form two pairs of similar trianglesArea = $bh = ab \sin C$
Rhombus	Def.: parallelogram w/ all equal sides Properties: - Diagonals p and q are perpendicular. - Diagonals form 4 congruent triangles Area = $\frac{1}{2} pq$
Trapezoid	Def.: 1 pair of opposite sides are parallel Properties: The two triangles formed by the diagonals and bases are similar. b_1 Area = $\frac{1}{2}(b_1 + b_2)h$ b_2
Rectangle	Def.: parallelogram with all right anglesProperties: Highly symmetricArea = bh b
Square	Def.: rectangle with all sides equal Properties: Highly symmetric s Area = s^2
Other	Chevron (left): Symmetric and concave Kite (right): Perpendicular diagonals, one of which bisects the other

British Flag Theorem	Any point P (inside, outside, on, above, or below rectangle): $a^2 + c^2 = b^2 + d^2$
Cyclic quadrilaterals	ac+bd = pq (Ptolemy's Theorem) area = $\sqrt{(s-a)(s-b)(s-c)(s-d)}$ where $s = \frac{a+b+c+d}{2}$ (semiperimeter)

3D & POLYGON GEOMETRY		
Rectangular parallelpiped	Volume = abc Internal diagonal = $\sqrt{a^2 + b^2 + c^2}$	
Generalized cylinder	Volume = <i>Kh</i> (<i>K</i> is the area of the base)	h
Generalized pyramid	Volume = $\frac{1}{3}Kh$ (<i>K</i> is the area of the base)	h K
Sphere	Volume = $\frac{4}{3}\pi r^3$ Surface area = $4\pi r^2$	
Polygons	Sum of interior angles = $180^{\circ}(n-2)$ Area = $\frac{s^2n}{4\tan(180^{\circ}/n)}$	(<i>n</i> -sided convex polygon) (<i>n</i> -sided regular polygon)

TRIGONOMETRY	
Definitions	$a \boxed{\begin{array}{c}c} c & \sin \theta = \frac{a}{c} & \csc \theta = \frac{1}{\sin \theta} \\ \hline \theta & \cos \theta = \frac{b}{c} & \sec \theta = \frac{1}{\cos \theta} \\ \hline \pi \text{ radians} = 180^{\circ} & \tan \theta = \frac{a}{b} = \frac{\sin \theta}{\cos \theta} & \cot \theta = \frac{1}{\tan \theta} \end{array}}$
Common angles	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Polar vs. Cartesian coordinates	$P(x,y)$ r/θ $x = r \cos \theta$ $tan \theta = y/x$ $y = r \sin \theta$ $r = \sqrt{x^2 + y^2}$
Pythagorean Theorem	$\sin^2 \theta + \cos^2 \theta = 1$ $1 + \cot^2 \theta = \csc^2 \theta$ $\tan^2 \theta + 1 = \sec^2 \theta$
Double angle formulas	$\sin 2\theta = 2\sin \theta \cos \theta$ $\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 1 - 2\sin^2 \theta = 2\cos^2 \theta - 1$ $\tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta}$
Sum and difference formulas	$\sin(a+b) = \sin a \cos b + \cos a \sin b$ $\sin(a-b) = \sin a \cos b - \cos a \sin b$ $\cos(a+b) = \cos a \cos b - \sin a \sin b$ $\cos(a-b) = \cos a \cos b + \sin a \sin b$ $\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$ $\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}$