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Individual Round (10 min. per pair of questions, no calculators allowed) 
 
I-1. The sum    , the product   , and the difference of squares       of two positive numbers   

and   are the same number.  Compute the value of  . 
 
I-2. Let     be an acute triangle with altitudes        and       , such that     ,     , and     .  

Compute the length of       . 
 
I-3. Compute all ordered pairs of positive integers       such that         . 
 
I-4. Compute the smallest positive multiple of 999 that does not have any 9’s among its digits. 
 
I-5. Compute the sum of all four-digit positive integers that are palindromes.  (A number is a 

palindrome if it remains the same when its digits are reversed.) 
 
I-6. The roots of       

               are   ,   , and   , which are all non-zero.  Compute the 
ordered triple           . 

 
I-7. In triangle    ,      and     .  If         , compute the length of       . 
 
I-8. Let   be a polynomial of degree 2010 satisfying          for             .  Compute the 

value of        . 
 
I-9. Compute the number of positive integers less than 100 which have a prime number of positive 

divisors. 
 

I-10. Let     ,     , and    
 

  
     

 

  
     for integers    .  Compute the value of the infinite 

sum           . 
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Team Round (20 min., no calculators allowed) 
 
T-1. A four-digit number which is a perfect square is formed by writing Anne’s age in years followed by 

Tom’s age in years.  Similarly, 31 years from now, their ages in the same order will again form a 
four-digit perfect square.  Compute the number formed by their present ages. 

 
T-2. Bases   and   have the property that           and          .  Compute the ordered pair 

     . 
 
T-3. Compute the number of positive integers   for which there exists an integer  ,         , such 

that all of the roots of         and           are real and are integers. 
 
T-4. Compute how many 5-digits numbers       exist such that the digits   and   are each the sum of 

the digits to their immediate left and right. 
 
T-5. Triangle     has         and        .  Points  ,  , and   are on 

      ,       , and       , respectively, such that triangle     is equilateral.  If 
       , compute the area of triangle    . 

 
 

T-6. Compute the value of     
 

  
 

 

  
    

 

  
 

 

  
      

 

     
 

 

     
. 

 
T-7. The shortest side of a triangle has length 1 and the tangents of all of its angles are integers.  

Compute the length of the longest side of the triangle. 
 
T-8. Compute the value of                   . 
 

T-9. Compute the value of the sum                           where     denotes   

rounded to the nearest integer. 
 
T-10. Starting with a sequence of   1’s, you can insert plus signs (or no plus signs) between the 1’s to get 

various results.  For example, when    , you can get the results    ,        ,        , 
or        .  Compute the number of values of   so that the result      is possible. 

A
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Relay Round (6 min. per relay, no calculators allowed) 
 
R1-1. Compute the number of positive integers   for which          evenly divides         . 
 

R1-2. Let        .  Compute the value of the infinite product               . 

 
R1-3. Let        .  It is possible to place numbers in the vacant squares of the 

    grid shown so that the numbers along each row and column form 
(possibly different) arithmetic sequences.  Compute the value of  . 

 
 
 

R2-1. Compute the least solution to       
        . 

 
R2-2. Let         and let          .  Compute the real value of   such that               

and             . 
 
R2-3. Let        .  A number   is chosen at random from the interval       and a number   is 

chosen at random from the interval      .  Compute the probability that    . 
 

T
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Power Round (1 hr., no calculators allowed) 
 
A real function   defined on the set of real numbers is called integer-valued if      is always an integer for 
all integers  .  If   is a polynomial that has integer coefficients, then clearly it is integer-valued.  But there 
are also polynomials with non-integer coefficients that are also integer-valued.  In this round, you will 
find out what those polynomials are. 
 
Definitions: 

 The polynomials    are defined as         for all   and, for all integers    , as                 

      
                     

               
  for all  . 

 For every function   define a corresponding function    such that                   for all 
 . 

 The degree of a polynomial   is the highest power of its terms with non-zero coefficients, or is 
zero if   is constant (including zero). 

 
 
1. a. Prove that               is integer-valued. 
 b. Provide a simple example of a non-constant polynomial   with rational coefficients such that      

is never an integer for all integers  . 
 
2. Prove that                for all   and all integers    . 
 
3. a. For all integers     determine (in terms of  ) all real values of   such that        . 
 b. Prove that    is integer-valued (i.e.       is an integer for all integers  ) for all integers    . 
 
4. a. Prove that if   is integer-valued, then    is integer-valued. 
 b. (Distributive property)  Let                  for all   for any given functions   and   and any 

given constants   and  .  Prove that                     for all  . 
 
5. Prove that if   is a polynomial of degree    , then    is a polynomial whose degree is    . 
 
6. a. Show that if   is a polynomial and    is identically zero, then   is constant. 
 b. Provide a simple example of a continuous, non-polynomial function   such that    is identically 

zero. 
 
7. Show that if   and   are polynomials and             for all  , then             for all   

for some constant  , and furthermore, if   and   are also integer-valued then   is an integer. 
 
8. Let   be a polynomial of degree    .  Prove that   is integer-valued if and only if there exist 

integer coefficients              such that                                    for all  . 
 
9. (Uniqueness)  Let   be a polynomial of degree    .  Prove that if, for all  ,              

                      and                                    for the coefficients 
             and             , then       for          . 

 
10. a. Describe with proof an algorithm that, given a specific integer-valued polynomial, can determine 

the value of the integer coefficients (as defined in Problem 8). 
 b. Compute the integer coefficients (as defined in Problem 8) for                     . 
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Answers 
 
Individual Round 
 

I-1.          

I-2.    
I-3.       and        
I-4.        
I-5.        
I-6.                      
I-7.    
I-8.        
I-9.    
I-10.        
 
Team Round 
 
T-1.      
T-2.        
T-3.    
T-4.     

T-5.        
T-6.              (        

    
 is also acceptable) 

T-7.       

T-8.    
T-9.        
T-10.     
 
Relay Round 
 
R1-1.   
R1-2.    
R1-3.      
 
R2-1.    
R2-2.   
R2-3.     
 
Acknowledgements 
 
Thanks to Oleg Kryzhanovsky and George Reuter for reviewing the problems. 
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Individual Round Solutions 
 
I-1. Since                     , dividing both sides by       yields       or 

     .  Substituting this into        yields             or         .  The only 

positive root of this equation is             . 

 
I-2. Solution 1:  Since triangle     is acute,        and        intersect inside the 

triangle, as shown.  Now, let     .  By the Pythagorean Theorem, 

              and         .  So, the area of the triangle 

equals 
 

 
     

 

 
      .  Solve as follows:               

           .  Thus,            . 
 
 Solution 2:  Since triangle     is acute,   lies between   and  , so           .  Since right 

triangles     and     are similar, we conclude that            .  Hence,         , so 
      and                  . 

 
 Note:  Can you prove that, given a triangle     with altitudes        and       , such that     , 

    , and     , that     must be an acute triangle? 
 
I-3. If     then            for some even integer   .  Consequently,                    

       which cannot be a perfect square because it is an odd multiple of 8.  For    , we have 
        ,         ,         ,         , and          .  Thus, the only solutions 
are       and       . 

 
I-4. The  th positive multiple of 999 can be written as             , which is an integer that is   

less than the number        .  For any positive integer  , the 100 integers preceding   have a 
9 in the hundreds digit, and the smallest of them is        .  The 10 integers preceding   
have a 9 in the tens digit, and the smallest of them is       .  The integer preceding  , which 
is    , has a 9 in the ones digit.  Therefore,   must be greater than              to ensure 
that      does not have any 9’s in its last three digits.  If      , then there are no 9’s at all 
because                . 

 
I-5. Solution 1:  Every palindrome      can be put into one-to-one correspondence with the 

palindrome      where        and      .  Note that they are different palindromes 
because       implies that    , and also note that the pair of palindromes always add to 
11000.  There are 90 palindromes (45 pairs) since there are 9 choices for   and 10 choices for  .  
So, the sum is                 . 

 
 Solution 2:  Note that                       .  In the palindrome     , the number 

   formed by the first two digits can equal            which sum to                
            .  The number    formed by the last two digits can equal any number from 01 
through 99 except multiples of 10, and this set of numbers sum to                   
             .  Thus, the total sum of all the palindromes is                      . 
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I-6. By Vieta’s Theorem, the coefficients and roots of the equation are related as follows: 
 

            
                      

          
 
 From the first equation we conclude        .  This implies that            , so from the 

second equation we conclude that         and hence         .  From the third equation we 
conclude that       , hence           .  The answer is                     . 

 
I-7. Solution 1:  Let     , and let       so that       .  By 

the Law of Sines, 
    

 
 

     

 
 

         

 
, so then      

 

  
.  By 

the  Law of Cosines,                         
 

 
   

   
 

 
  .  Solving yields          . 

 
 Solution 2:  Let point   on        be the foot of the angle bisector of 

    , so               .  The Angle Bisector Theorem 
gives          .  Let      , then       .  Since triangles 
    and     are similar, we conclude that             
                        .  Thus,            . 

 
I-8. Consider the polynomial             .  Each of the numbers            is a root of     . 

Since the degree of      is 2011,  
 
                                    
 
 for some constant  .  To determine that constant, note that                          , 

so          .  Furthermore,                       
 

     
                  . 

Thus,                        . 
 
I-9. If the prime factorization of   is     

    
    

     
  , then   has                     

divisors.  Hence, for   to have a prime number of divisors,   can only have one prime factor   and 
for   to be less than 100 it must be of the form  ,   ,   , or   .  There are 25 prime numbers less 
than 100, and                      are the only other possibilities less than 100, for a total of   .  
(Note: by definition 1 is not a prime number!) 

 
I-10. From the wording of the problem, one can implicitly assume that the sum converges, but it can be 

proven directly from the definition of the sequence.  To do so, we first note that      and 
 

  
           for all integers    .  The latter inequality can be proven by induction as 

follows.  Note that the inequality holds true for    .  If it also holds true for       for some 
    then we can state: 

 
       

 

  
     

 

  
   

 

 
   

 

  
   

 

  
      

       
 

  
     

 

  
   

 

  
   

 

  
   

 

  
   

 

  
   

 
 Hence,  

  
          , thus completing the induction. 
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 Returning to the proof of convergence, note that      
 

  
     

 

  
     

 

 
     

 

  
     

 

  
     for integers    .  So,        

  
 
   

     

  
 
   

 for integers    , and since a 

geometric series with common ratio of      converges, the desired infinite sum also converges. 
 
 Solution 1:  Let the desired sum be                 

 
   .  Since all elements of the sum 

are positive, we can rearrange them in any order: 
   

     

 

   

 

          

 

   

 

         
 

  
     

 

  
     

 

   

 

        
 

  
  

 

   

  
 

  
  

 

   

 

       
 

  
  

 

  
       

 
  

  
 

 

  
  

 
 Solving yields           . 
 
 Solution 2:  Consider     .  This term contributes      

  
  to    and      

  
  to   .  In turn, these 

terms respectively contribute      

  
   

  
  to    and      

  
   

  
  to   , and      

  
   

  
  to    and 

     

  
   

  
  to   .  Continuing, every term reappears multiplied by  

  
 or  

  
 depending on whether 

we look forward one or two terms down the sequence, respectively.  Ultimately, for every integer  
    and          , the product of every permutation of   copies of  

  
 and     copies of  

  
 

will contribute to some term in the sequence.  For any given  , the binomial expansion of   

  
  

  
 
 

 

exactly contains all such permutations, so the total contribution of all the terms resulting from 
     is given by the infinite series: 

 

   
 

  
 

 

  
   

 

  
 

 

  
 
 

  
 

  
 

 

  
 
 

    
 

  
 

 

  
 
 

   

   
 

  
  

 

  
 
 

  
 

  
 
 

   

 
 

   
  

 

 
  

  
 

 
 The terms emanating from the term       that appears in    are the same, but all multiplied by 

    , and therefore contribute                    to the total sum.  The only other term not 
accounted for is     .  Thus, the total desired sum is                     . 
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Team Round Solutions 
 
T-1. If one age has one digit then the other age has three digits, and in 31 years the concatenation will 

not have exactly four digits.  Since an age must have at least one digit, both present ages must have 
exactly two digits, and 31 years from now, both ages will still have two digits.  Now, let    be the 
four-digit number formed by Anne and Tom’s present ages and let    be the four-digit number 
formed by their ages in 31 years.  Then,           , which can be factored as         
 =10131.  Since   and   are two-digit positive integers,  + >   , so it must be that  + =101 
and        (and not          and      ).  Subtract the two equations to get      , 
so     , and     1225.  (Indeed, in 31 years the 4-digit number formed by their ages is 
           .) 

 
T-2. The two equations imply that                   (*) and              (**).  

Rearrange (**) to get                     , and since both   and   are positive 
integers,      .  One can substitute this equation in (*) and solve for  , but to make the 
algebra simpler, first subtract two times equation (**) from (*) to yield          , then 
substitute to get               leading to                      .  Therefore, 
    and     , and the answer is       . 

 
T-3. If the quadratics have integer roots then the discriminants       and         are perfect 

squares.  The only perfect squares that differ by 4 are 0 and 4 (since if for integers       we 
have                   ,   and   must have the same parity, so       and 
     , whose solution yields              ).  Thus, if there exists an integer   with the 

desired property then                , implying that     is a perfect square and   is 
even.  Furthermore, if the desired   exists, then the roots of         are     

 
   and 

          has a double root at    
 

 
, and all of these roots are integers since   is even.  

Since          and         , the only integer solutions for   are                  , 
and these correspond to           .  So, the total number of values for   with the desired 
property is   . 

 
T-4. Note that    , so then    .  Likewise,    , so then    .  For each choice of         such 

that     and    , there is a unique pair of digits       such that       has the desired 
property.  For each value of  , there are thus     choices for   and      choices for  .  Thus, the 
answer is              

                                   . 
 
T-5. Let         and let           .  Then, 

             and        .  Note that    

is a right angle, so          by the Pythagorean 
Theorem.  Applying the Law of Sines to triangle     

yields 
      

 
 

    

 
.  From right triangle     we can  

determine      
     

 
, thus 

    

 
 

     

 
.  Then, 

   
 

 
, and the area of     is 

    

 
  

   

  
. 

  
A
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1
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60

60

60

120 – 

60



s

s

2 1s 

s



 

10 
 

T-6. One can show that for    , 
 

   
 

      
 

 

  
  

                  

        
 

  
                 

        
 

  
                  

        
 

  
           

        
 

   
 

      
 

 
 Hence, the desired sum is: 
 

    
 

   
     

 

   
       

 

         
        

 

   
 

 

   
   

 

         
  

 
Furthermore, the identity  

      
  

   
  

 
 holds for    .  Therefore, the sum telescopes to 

 

      
 

   
 

 

   
   

 

         
    

 

 
 
 

 
   

 

 
 
 

 
     

 

    
 

 

    
   

         
 

    
  

      
 

    
 

 
 The final answer is                             .  (The answer in the form         

    
 is 

also acceptable). 
 
T-7. Solution 1:  Let the triangle be     with   the smallest angle and   the 

largest angle.  Since        ,        , and since      is an integer 
it must be 1.  Note also that no angle is a right angle because all tangents 
are finite.  Thus, we can apply the Law of Tangents:           
                 .  Since        (otherwise,             
so then    is a right angle, which is impossible), we can solve as follows: 

 

        
      

      
   

 

      
 

 
 For      to be an integer,        must be an integer divisor (positive or negative) of 2, so 

       equals 2, 1, –1, or –2.  Thus, the only solutions are, respectively,             
                         .  Since   and   are angles whose measures are between    and     , 
and   is the largest angle, the only solution is                  . 

 
 Now, let        be the altitude to       .  Since  ,  , and   are angles of a triangle whose tangents are all 

positive, they are all acute angles, and   is between   and   (see diagram).  Dividing      

CB

A

3/5 D 2/5

6/5
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        by              yields          .  Also, note that           .  
Solving these equations simultaneously yields the values        and       .  Then, 

                , and by the Pythagorean Theorem, the longest side          . 
 
 Solution 2:  Determine the values of     ,     , and      as in Solution 1.  Since       ,   is an 

acute angle, so          .  Since       ,   is an acute angle, so      
    

        
 

    

  
.  The 

longest side        and the shortest side        are opposite to the largest angle   and the smallest angle 
 , respectively.  By the Law of Sines,                , so                  

                          . 

 
T-8. Solution 1:  We wish to determine the value of 
 

                   
                  

                  
 

 
                                             

                  
 

                     
 
 where in the last line we used the fact that              .  Continuing, we note the following 

identities:           

 
                    and           

 
                   .  

Therefore, 
 

                                           
                       
                          
         

 

 noting that            and              .  Hence, the desired answer is   . 
 
 Solution 2:  The product of the tangent addition and subtraction identities yields 
 

                 
         

          

         

          
 

 
           

            
 

 
 Thus, 
 

                                     
               

                
 

 
               

          
 

 

 Since the tangent triple angle identity is       
           

        
, the above expression must equal 

                     . 
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T-9. Note that     

 
 
 
       

 
.  Therefore, for integers    ,       only for those integers   

satisfying                      , a range that contains      integers.  Since 
     yields          , the desired sum equals: 

 

              

  

   

             

  

   

 

       
            

 
 
      

 
 
    

 

       
            

 
 
       

 
  

 
 The final expression simplifies to       . 
 
T-10. Clearly, the shortest representation of 1111 is a sequence of     ones with no plus signs.  For a 

sequence of     ones, 1111 only results if 1, 11, and 111 are the only numbers formed by the 
plus signs.  Suppose these numbers appear  ,  , and   times in the sum, respectively.  Then, 
          (*) and                 (**).  Taking (**) modulo 9 yields         
      , so          also. 

 
 It is possible to form 1111 from      ones, using one copy of 1 and ten copies of 111 (i.e.,    , 

   ,     ).  It is not possible for 1111 to result from a sequence of     , 22, or 40 ones.  To 
prove this, we first note that  ,  , and   are non-negative integers, hence,              .  
Then, subtracting (*) from (**) yields a lower bound for   as follows:                
                                             .  From (**) we obtain an 
upper bound for   as follows:                            .  Therefore: 

 
 If     ,                      .  Thus,     , implying     , a contradiction. 
 If     ,                 .  Thus,     , implying     , a contradiction. 
 If     ,                 .  Thus,     or 10.  If    , then (*) and (**) simplify 

to         and           whose simultaneous solution is      and     , 
which is impossible since   is non-negative.  Similarly, if     , then         and 
        so then      and     , which is also impossible. 

 
 We have covered all values of          such that     .  Now, we claim that 1111 can be 

obtained for every          where          .  To prove this, we begin with the 
representation of 1111 discussed above that uses one 1 and ten copies of 111.  By successively 
replacing one copy of 111 with one 1 and ten copies of 11, we get representations of 1111 using 
       ones, for           .  Each of these representations includes at least one copy of 11.  
To get representations of       ones for odd values of           , take the representation 
using                          ones and replace one of the copies of 11 with eleven 
ones.  Since              , we have so far covered the range         .  For the rest, 
note that the above representation with 211 ones has 100 copies of 11 and 11 copies of 1.  
Successively replacing each 11 with eleven ones generates 9 more ones each time, until the sum 
consists of 1111 copies of 1, for a total of        ones.  This completes the proof of the claim. 

 
 Finally, there are no other valid values of   because                          . 

Since there are                   numbers from 49 to 1111 that are congruent to 4 
modulo 9, and by also counting     and 31, the answer is    .  
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Relay Round Solutions 
 
R1-1. Clearly,    evenly divides          if   is an integer within          .  Since       ,           

evenly divides          for          .  If    , then                                       
so it is not possible for           to evenly divide         .  Hence, the answer is  . 

 

R1-2. Solution 1:  Let the product be  .  Then                                  .  

Hence,             . 
 

 Solution 2:                                        
 
 
  
 
  
 
             . 

 
R1-3. The second term of an arithmetic sequence is the average of the first and 

third term.  Applying this property to the rightmost column implies the 
square in the lower right corner has value      .  Applying it again to 
the bottom row implies the middle square of that row has value 
 

 
          

 
     .  Applying it once more to the middle column 

yields    

 
  
 
           

 
       

 
               . 

 
 (Similarly, one can determine the values of the empty squares in the leftmost column, and arrive at 

the same answer for  .  The resulting 3  3 grid is shown above with squares filled out in terms of 
 .) 

 
R2-1. For the expression to equal one, either (i) the exponent is           for    , or (ii) the 

base is      , or (iii) the base is        and the exponent is even.  In the first case, 
                     so      or   .  In the second case,    , and in the third 
case,     (and the exponent is 12).  So the answer is   . 

 
R2-2. Note that 
 

                      

              
                 
              

 
 Therefore,                                                        

          , making     . 
 
R2-3. Consider the rectangle with corners at      ,      ,      , 

and      .  The desired probability is the fraction of the 

rectangle below the line    .  If    , it is 
        

 
 

  
 

 
.  If    , it is 

   

 
 

 

  
.  Since    , the answer is 

 

   
  

 

 
. 

 
 
 

1

T

T
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1
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y

x
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1
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1
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T

12

2012

–1988

20–1972



 

14 
 

Power Round Solutions 
 
1a. For all integers  , the integers   and     are of opposite parity, and one of them is evenly 

divisible by two.  Hence,               is integer-valued. 
 
1b. The non-constant polynomial         

 
 has rational coefficients and is never an integer for all 

integers  . 
 
2. For    , we have                         .  For    , we have: 
 

                           

 
                           

                 
 
                       

                 
 

 
                  

                 
              

 
                  

                 
      

 
                  

            
 

       
 
3a. If    , then        , which is never zero.  If    , by direct substitution, the   distinct values 

            yield        .  Since    is a polynomial of degree  , it has at most   distinct 
roots (i.e. values of   for which        ), and there are no other solutions.  So, the desired   are: 

 

   
                
             

  

 
3b. If    , then        , which is always an integer for all integers  .  If    , then for integers 

   , we have         
 
 , which is always an integer because it is the number of ways to choose 

subsets of   elements from a set of   distinct elements, where the order of the   elements does not 
matter.  For integers      , from Problem 3a,  the result is a specific integer, namely 
       .  For integers    , we can rewrite       as 

 

      
                       

            
 

 
     

  
                          

 
     

  
                                      

                 
 

which is an integer because                is an integer greater than or equal to  .  
Thus,       is an integer for all integers  . 

 
4a. If   is integer-valued then        and      are integers for all integers  .  Hence, their difference 

                  is also an integer for all integers  .  This proves that if   is any integer-
valued function, then    is also integer-valued. 
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4b. Use the definition of   as follows: 
 

                  
                                 

                               

               
 
5. Any polynomial   of degree     can be written as         

       
             

where     .  Then,    is a polynomial of the form: 
 

                  
                                  

       
          

 
 The highest term in the parentheses on the left is    

 , from the expansion of         .  The 
highest term in the parentheses on the right is also    

 .  So these terms cancel out. 
 
 The second-highest term in the parentheses on the left is            

    which comes from the 
expansion of          and             , and the second-highest term in the parentheses on 
the right is      

   .  Therefore, the subtraction leaves the term     
   , which has a non-zero 

coefficient.  Hence,    is a polynomial whose degree is    . 
 
6a. Clearly a constant polynomial   has the property that    is identically zero.  We will show that no 

other polynomials have this property. 
 
 Suppose that   is a polynomial of degree    .  Then             for some non-zero   , and 

                               cannot be identically zero.  Now assume that   is a 
polynomial of degree    .  From Problem 5 we know    is a polynomial with degree      , 
and thus is non-constant and    cannot be identically zero.  Therefore, there are no non-constant 
polynomials   having the property that    is identically zero. 

 
6b. One example is               which is a sinusoid with period 1.  This continuous function is not 

a polynomial because it is not identically zero (e.g.,         ) and it has infinitely many roots 
(       for all integers  ).  Furthermore,                               

                                         , for all  . 
 
7. Define the polynomial   as                for all  .  So, by Problem 4b,             

      for all  .  Now, if for all  ,            , then                     so Problem 6a 
implies that                 , or equivalently            , for some constant  .  This 
equation also implies that if      is an integer for all integers  , then   must be an integer for      
to also be an integer for all integers  . 

 
8. In this solution, we will say that the polynomial   is an integer linear combination of              

if there exist integer coefficients              such that                            
        for all  . 

 
 First, we wish to prove the forward statement, which is equivalent to the statement that, for all 

integers    , all polynomials   of degree   that are integer linear combinations of              
are integer-valued.  This is straightforward, because by Problem 3b,       is an integer for all 
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integers   and all integers    .  Therefore, for all integers    , all polynomials   of degree   
that are integer linear combinations of              have the property, for all integers  , that 
     equals the sum of products of integers, which always results in an integer. 

 
 Second, we wish the prove the reverse statement, which is equivalent to the statement that, for all 

integers    , all integer-valued polynomials   of degree   are integer linear combinations of 
            .  We will prove this by induction.  For    , we consider all integer-valued 
polynomials   of degree zero.  All such   are constant integers and can be written as an integer 
times        .  Thus, all polynomials   of degree zero are integer linear combinations of   . 

 
 Now assume, for some integer    , that all integer-valued polynomials of degree   are integer 

linear combinations of             .  Consider any given integer-valued polynomial   of degree 
   .  Then, by Problem 5,    is an integer-valued polynomial of degree  , and for all  , can be 
written as 

 
                                      
 
 for some integers             .  Using Problem 2, we can then write 
 
                                         
 
 for all  .  It is easy to show by induction that the distributive property of   (Problem 4b) 

generalizes to any number of addends, therefore             for all   where 
 
                                     
 
 Problem 7 then implies that, for all  , 
 

                                                

 
 for some integer  .  Therefore,   satisfies, for all  , 
 
                                            
 
 All of the coefficients in the above expression are integers, and this is true of any integer-valued 

polynomial   of degree    .  Hence, all integer-valued polynomials of degree     are integer 
linear combinations of              thus completing the induction. 

 
9. Solution 1:  We have                                                        

          for all  .  Two polynomials of   are equal for all   only if the coefficients of each 
power of   are the same.  Since only       has the term   , this implies that    

        
    , 

so      .  Now consider 
 

                                                         
 
 Again, the coefficients of each power of   must be the same.  Since only         has the term     , 

this implies that      
                

          , so          .  By repeating this 
reasoning, we can conclude that       for          . 
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 Solution 2:  Note that         for             for all integers     (Problem 3a) and 
        for all integers    . 

 
 We have                                                             for all  .  

By taking    , remembering that         for all integers     and        , the equation 
simplifies to      .  So,                 for all  .  If    , take    , remembering that 
        for all integers     and        , so then the equation simplifies to            
                .  Next, if    , take    , remembering that         for all integers 
    and        , so then the equation simplifies to                               
             .  By repeating this reasoning we can conclude that       for          . 

 
10a. Algorithm 1:  Let   be any integer-valued polynomial of degree  .  The algorithm is as follows: 
 

1. Set the value of   equal to  . 
2. Represent         

       
            .  (On each iteration of 

this algorithm, the values of the  ’s can be different.) 
3. Choose        . 
4. Replace      with             , then set the value of   equal to    . 
5. Repeat steps 2 through 4 if    , otherwise terminate. 

 
 Proof:  The proof is conceptually similar to Solution 1 of Problem 9.  We wish to write the 

polynomial         
       

             as                            
       .  These two expressions are equal only if the coefficients of each power of   are the same.  
After Step 1,     , and we are concerned with    which in the latter expression is only present in 
     .  Thus, equating the coefficients of    yields          leading to         given in Step 3. 

 
 Continuing with Step 4, still noting that    ,              is a polynomial of degree      .  

Furthermore,      and              have the same integer coefficients    for             
(where, to account for the scenario in which      , we take    to be 0 for        ).  Thus, 

if we apply Steps 2 and 3 to              using         instead of  , we can determine 
the value of     .  Likewise, subsequent iterations will then determine               . 

 
 The algorithm terminates after determining the last integer coefficient,    (i.e.,      at Step 5). 
 
 Algorithm 2:  Let   be any integer-valued polynomial of degree   to be written as      

                             .  The algorithm is to compute the integer coefficients using 
the equation                 

   
    sequentially in the order          . 

 
 Proof:  The proof is conceptually similar to Solution 2 of Problem 9.  Note that         for 

            for all integers     (Problem 3a), and         for all integers    .  Thus, 
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 and in general, for           
 

                                          

            

   

   

 

 
 This leads directly to the claimed equation for   .  Note also that for each  , the computation of 

   depends only on the previously computed values of             , and the values of known 
polynomials at  .  Thus, at each step the equation is a closed formula and the algorithm can be 
used to sequentially determine the integer coefficients. 

 
 Comment:  Can you use Algorithm 2 to prove the “reverse” statement of Problem 8 (all integer-

valued polynomials   of degree     are integer linear combinations of             )? 
 
 Comment:  What results if either algorithm is applied to a polynomial that is not integer-valued? 
 
10b. Algorithm 1:  Note that 
 

        
        

      
 

 
       

 

 
   

 

 
  

      
 

 
            

 

 
   

 

 
   

 

 
  

 
 Clearly   is integer-valued.  Thus by Algorithm 1 from the Solution of Problem 10a, 
 

           

                                  
 

 
   

 

 
   

 

 
   

               
 
 Then, 
 

           

                           
 

 
   

 

 
   

           
 
 Then, we can easily see that      and     .  Overall,                          . 
 
 Algorithm 2:  Clearly   is integer-valued.  Thus, by Algorithm 2 from the Solution of Problem 10a, 

the integer coefficients are as follows: 
 

          
                        
                                          

                                                       

 
 So we obtain the result                          . 
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